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Abstract      

 

     GRC research has led to the development of epoxy-clay nanocomposites with 60-70% 

lower gas permeability than the base epoxy resin.  Filament wound carbon fiber 

reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate 

than the corresponding tanks made without clay.  More recent work has produced new 

composites with more than a 100-fold reduction in helium permeability.  Use of these 

advanced, high barrier composites would eliminate the need for a liner in composite 

cryotanks, thereby simplifying construction and reducing propellant leakage. 

     Aerogels are attractive materials for use as cryotank insulation because of their low 

density and low thermal conductivity.  However, aerogels are fragile and have poor 

environmental stability, which have limited their use to certain applications in specialized 

environments (e.g., in certain types of nuclear reactors as Cerenkov radiation detectors, 

and as thermal insulators aboard space rovers on Mars).  New GRC developed polymer 

crosslinked aerogels (X-Aerogels) retain the low density of conventional aerogels, but 

they demonstrate a 300-fold increase in their mechanical strength.  Currently, our 

strongest materials combine a density of ~0.45 g/cc, a thermal conductivity of ~0.04 

W/mK and a compressive strength of ~185 MPa. Use of these novel aerogels as 

insulation materials/structural components in combination with the low permeability of 

epoxy-clay nanocomposites could significantly reduce cryotank weight and improve 

durability. 



Introduction 

 

     Previous efforts to reduce cryotank weight through the use of composite materials in 

place of traditional metals have had limited success.  Concerns about the permeability 

and damage tolerance of cryotanks have led to the over design of composite tanks which 

adds weight and negates any benefits that might be realized by the use of lightweight 

composite materials.  Full utilization of composite materials requires the development of 

new lightweight, thermally insulating, mechanically robust composite sandwich 

structures with low permeability and good resistance to microcracking as well as good 

damage tolerance to withstand any impact damage during servicing, fueling, launch or 

deployment. 

     Traditionally, metallic tanks have been used for housing cryogenic fluids.  The 

advantages of such tanks include high strength and stiffness, and low permeability.  

Presently, it appears that the replacement of traditional metallic cryogenic fuel tanks with 

polymer matrix composite (PMC) tanks may lead to significant weight reductions and 

hence increase load carrying capabilities.
1
  However, the tanks must be able to withstand 

flight loads and temperatures ranging from -250
 o

C to 120
o
C, without loss of cryogenic 

fuel due to microcracking or delamination. 

     A critical concern with composite materials is matrix microcracking at cryogenic 

temperatures.
2
  Microcracking allows permeation of the cryogenic fluid into the bulk 

polymer matrix which can result in catastrophic failure.  For composite tanks to be a 

viable replacement to the current tanks, an approach must be taken which reduces 

permeability of the composite but also enhances the strength and toughness of the 

composite matrix.   



     Several approaches have been taken to design lightweight composite sandwich 

structures for cryotank construction.  Many designs incorporate a metallic or polymeric 

liner, where the liner material has low gas permeability.
3,4

  While some of these 

approaches have been successful, there remains the issue of the added weight of the liner, 

CTE mismatch, and propellant permeation.  For example, significant core/face sheet 

delaminations in these sandwich structures were observed in the failure of the X-33 

Liquid Hydrogen Tank.
5
 

     While previous efforts have relied on the use of conventional composite and core 

materials to reduce the microcracking and permeability of the tanks, advances in 

nanotechnology derived materials may enable the production of ultra-lightweight 

cryotanks with significantly enhanced durability and damage tolerance.  Layered silicate 

nanocomposites are attractive materials for composite cryogenic storage tanks.  These 

materials often exhibit an order of magnitude reduction in gas permeability when 

compared to the base resin.  In addition, polymer-silicate nanocomposites have been 

shown to yield improved material strength and modulus, with minimal negative impact 

on toughness.
6
 

     Similarly, molecular manipulation of the delicate framework of a silica aerogel 

consisting of a three dimensional structure of nanoparticles (1-10 nm across) allows a 

desirable combination of macroscopic properties such as high strength and low density.
7-9

 

Specifically, by tailoring the surface chemistry of silica we can build molecular 

oligomeric tethers between the skeletal nanoparticles of the aerogel leaving the void 

space between the nanoparticles open. That results in a dramatic increase in the specific 

strength of the material at a minimal increase in density.  Thus the low thermal 



conductivity of the native silica aerogel is retained and the new material (X-Aerogel) can 

now play the dual role of the thermal insulator/structural component of a cryogenic tank, 

eliminating the need for metal.   

 

Experimental 

          The resins chosen were Epon 826 with D230 curing agent, and Epon 862 with W 

curing agent.  These are not toughened resins, but were chosen because previous work 

has shown good silicate dispersion in these matrices.  Therefore, the added effects of the 

silicate were of interest, rather than resin properties.  Toughened epoxy nanocomposites 

are currently being prepared and analyzed.    

Materials 

     Epon Resins (826 and 862) and the W curing agent were donated by Resolution 

Performance Products.  Huntsman Chemical Company generously supplied the Jeffamine 

D230 curing agent.  Organically modified clays were received from Southern Clay 

Products (Closite 30B) and from Professor Tom Pinnavaia’s group at Michigan State 

University (ODA-clay). 

Nanocomposite Synthesis 

     Epoxy-clay nanocomposite plaques (4”x4”) were prepared by stirring the epoxy (15g) 

with either 0 wt%, 2 wt% or 5 wt% organically modified silicate on a hotplate.  The 

temperature was set so that the epoxy viscosity was reduced and stirring with a magnetic 

stir bar was possible.  The epoxy portion was cooled and the crosslinking agent was 

added (5.25g).  The mixture was poured into a 4”x4” mold and degassed at 60
o
C for 3 



hours under vacuum.  The resin was then cured in an air-circulating oven by heating at 

75
o
C for 2 hours and 125

o
C for 2 hours. 

Characterization 

     X-ray diffraction (XRD) patterns were obtained using a Philips XRG 3100 X-ray 

diffractometer with Ni-filtered CuK  radiation.  Transmission electron microscopy 

(TEM) specimens were prepared by microtoming sections of the nanocomposites, 70 to 

80 nm thick, and floating the sections onto Cu grids. Micrographs were obtained with a 

Philips CM 200, using an acceleration voltage of 200 kV. 

     CTE measurements were made using a TA instruments ThermoMechanical Analyzer.  

The Izod Impact data was collected on a Custon Scientific Instruments Inc.  Impact tests 

were according to ASTM D256, Test C, Notched specimens, using a 6 in-lb weight 

source. 

     Helium Permeability measurements were performed by Ms. Sofia Martinez of 

Professor David Hui’s group at the University of New Orleans. 

 

Results and Discussion 

     The significant enhancements in barrier performance that are typically reported for 

clay nanocomposites are dependent on the level of silicate separation.  A high level of 

dispersion creates a maximum path length for the permeating gas, thereby slowing gas 

diffusion.  In most samples, wide angle XRD did show a peak corresponding to an 

expanded d001 spacing of the silicate layers, as well as a reduction in peak intensity.   This 

suggests a combined intercalated and exfoliated nanocomposite morphology, which was 



supported by TEM.  Figure 1 illustrates both the intercalated and exfoliated regions of the 

826/ 5% ODA clay nanocomposite.     

        

Figure 1: TEM images of (a) intercalated nanocomposite morphology and (b) exfoliated 

nanocomposite morphology. 

 

Permeability measurements 

     The addition of either Closite 30B or ODA to Epon 862 resulted in up to a 67% 

decrease in permeability compared to the base resin, as shown in Figure 2.  Reductions in 

permeability between 30 and 80% are often observed for clay nanocomposites.  This is 

due to the random arrangement of the clay layers, which increases the path of the 

diffusing gas.  However, because the layers are not oriented, the increase in path length is 

not maximized.  It has been assumed that orienting the clay layers within the bulk resin 

would yield the lowest permeability and there is some indication that carbon fiber 

reinforcement of layered silicate nanocomposites may result in alignment of the silicate 

along the fiber axis.
10

  Results of leak rate tests on a 9L, carbon fiber reinforced, 

nanocomposite tank prepared at GRC support this.  The nanocomposite matrix tank 



showed a 5-fold reduction in helium leak rate compared to the carbon fiber reinforced 

neat resin tank.   
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Figure 2: Decrease in helium permeability as a result of silicate dispersion. 

The permeability of the Epon 826 resins is currently being evaluated. 

 

CTE:  The coefficient of thermal expansion is an important parameter to consider when 

developing materials for cryogenic tanks.  The primary cause of microcracking is the 

difference in the CTE of the matrix and the reinforcing carbon fibers.  Layered silicates 

have been reported to lower the CTE of the matrix
11

 and evaluation of the 

nanocomposites prepared in this study show a modest decrease.  The results for CTE 

measurements below the resin Tg are listed in Table 1.   

EPON 826 CTE (μm/
o
C) EPON 862 CTE (μm/

o
C) 

0% silicate 83 
+
/- 5 0% silicate 84 

+
/- 10 

2% ODA 60 
+
/- 4 2% ODA 57 

+
/- 9 

5% ODA 60 
+
/- 11 5% ODA 63 

+
/- 0 

2% 30B 70 
+
/- 10 2% 30B 64 

+
/- 6  

5% 30B 75 
+
/- 0 5% 30B 67 

+
/- 6 

Table 1: CTE measurements for epoxy resins and nanocomposites. 

On average, the resin CTE was lowered by 25% when clay was added.  A decrease in 

CTE of the nanocomposite can be attributed to the fine dispersion and rigidity of the clay 



platelets in the epoxy matrix, which can inhibit the expansion of polymer chains as the 

temperature is raised.
12

   

 

Toughness:  Impact testing has shown that addition of silicate to these resins reduced the 

toughness when compared to the base resin.  This has been observed in other systems 

where a rigid filler was added to a polymeric matrix. In this case however, the decrease 

was minimal.  Table 2 lists the notched impact results  

EPON 826 Impact Resistance 

(J/m) 

EPON 862 Impact Resistance 

(J/m) 

0% silicate 25 
+
/- 1 0% silicate 14 

+
/- 4 

2% ODA 17 
+
/- 1 2% ODA 13 

+
/- 1 

5% ODA 14 
+
/- 1 5% ODA 13 

+
/- 1 

2% 30B 19 
+
/- 2 2% 30B 10 

+
/- 2 

5% 30B 15 
+
/- 2 5% 30B 10 

+
/- 2 

 

Aerogels: 

     A typical X-Aerogel can be made by co-gelation of tetramethoxysilane (TMOS) with 

aminopropyltriethoxysilane (APTES) yielding a nanostructured gel whose internal 

surfaces are rich with amines.
7-9

 Subsequently, the nanoparticles are bonded together with 

a conformal coating of polyurea that results from the reaction of a di-isocyanate with the 

surface amines. Removal of the pore filling solvent under supercritical conditions results 

in strong lightweight X-Aerogels.  The most dense samples ( ~0.48 g/cc) rely on a native 

silica framework with bulk density of ~0.20 g/cc, have a thermal conductivity of ~0.04 

W/mK and a compressive strength of ~185 MPa and a Young’s modulus of ~130 MPa. A 

typical stress-strain curve is shown in Figure 3 (Data provided by Prof. Samit Roy of 

Oklahoma State University).   

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Caption. Mechanical compression testing of a Desmodour N3200 crosslinked 

APTES-modified silica aerogel cylinder ~0.5” diameter, ~1” long.  Inset A: The set up 

before testing; Inset B: The set up at the point of collapse; Inset C: Expanded low strain 

range. 

 

Conclusions 

 Dispersion of layered silicate clays in two separate epoxy matrices showed a 

reduction in both resin permeability and CTE.  The resin toughness was also reduced.  

However, these results, as well as preliminary data from the composite tank, suggest that 

A B

C



nanocomposite materials may be a viable route to the preparation of linerless composite 

tanks. 
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